Authors: S Maurya, J H Dumont, C N Villarrubia, I Matanovic, Dongguo Li, Y S Kim, S Noh, J Han, C Bae, H A Miller, C H Fujimoto, Dario R Dekel
Material interactions at the polymer electrolytes–catalyst interface play a significant role in the catalytic efficiency of alkaline anion-exchange membrane fuel cells (AEMFCs). In this work, the surface adsorption behaviors of the cation–hydroxide–water and phenyl groups of polymer electrolytes on Pd- and Pt-based catalysts are investigated using two Pd-based hydrogen oxidation catalysts—Pd/C and Pd/C-CeO2—and two Pt-based catalysts—Pt/C and Pt-Ru/C. The rotating disk electrode study and complementary density functional theory calculations indicate that relatively low coadsorption of cation–hydroxide–water of the Pd-based catalysts enhances the hydrogen oxidation activity, yet substantial hydrogenation of the surface adsorbed phenyl groups reduces the hydrogen oxidation activity. The adsorption-driven interfacial behaviors of the Pd- and Pt-based catalysts correlate well with the AEMFC performance and short-term stability. This study gives insight into the potential use of non-Pt hydrogen oxidation reaction catalysts that have different surface adsorption characteristics in advanced AEMFCs.